A New Accurate Neural Network Quantitative Structure- Property Relationship for Prediction of θ (Lower Critical Solution Temperature) of Polymer Solutions
نویسنده
چکیده
In this study, a new neural network quantitative structure-property relationship model for prediction of ) (LCST θ of polymer solutions is presented. The parameters of this model are eight molecular descriptors which are calculated only from the chemical structure of polymer and solvent. These eight molecular descriptors were selected from 3328 molecular descriptors of polymer and solvent available in polymer solution by genetic algorithm-based multivariate linear regression (GA-MLR) technique. The obtained neural network model can predict the ) (LCST θ of 169 polymer solutions with mean relative error of 1.67% and squared correlation coefficient of 0.9736.
منابع مشابه
Quantitative Modeling for Prediction of Critical Temperature of Refrigerant Compounds
The quantitative structure-property relationship (QSPR) method is used to develop the correlation between structures of refrigerants (198 compounds) and their critical temperature. Molecular descriptors calculated from structure alone were used to represent molecular structures. A subset of the calculated descriptors selected using a genetic algorithm (GA) was used in the QSPR model development...
متن کاملQuantitative Structure-Pproperty Relationship Modeling of the Redox Potential for Some Phenolic Antioxidants
In this work, quantitative structure-property relationship (QSPR) approaches were used to predict the redox potential of 42 phenolic antioxidants. The structures of all compounds optimized by the AM1 semi-empirical method and then a large number of molecular descriptors were calculated for each compound in the data set. Subsequently, stepwise multilinear regression was applied to select the mos...
متن کاملPrediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method
In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...
متن کاملPrediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine
Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...
متن کاملPrediction of methanol loss by hydrocarbon gas phase in hydrate inhibition unit by back propagation neural networks
Gas hydrate often occurs in natural gas pipelines and process equipment at high pressure and low temperature. Methanol as a hydrate inhibitor injects to the potential hydrate systems and then recovers from the gas phase and re-injects to the system. Since methanol loss imposes an extra cost on the gas processing plants, designing a process for its reduction is necessary. In this study, an accur...
متن کامل